
Yibin Yang

Efficient Cryptographic Computation 
for Real-World Programs and People 

Advancing Algorithms and Systems



About Me

1



Applied Cryptographer

ToolchainsMe

1

About Me



Applied Cryptographer
Cryptography

ToolchainsMe

1

About Me



Applied Cryptographer

ToolchainsMe

1

About Me



Applied Cryptographer

ToolchainsMe

1

Verifiable
Privacy-preserving

About Me

Cryptography



Applied Cryptographer

ToolchainsMe

1

Verifiable
Privacy-preserving

About Me

Cryptography



Algorithms Toolchains

Applied Cryptographer

Me

1

Verifiable
Privacy-preserving

About Me

Cryptography



Algorithms Toolchains

Applied Cryptographer

Me

Zero-Knowledge Proof
Secure Multi-Party Computation

1

Verifiable
Privacy-preserving

About Me

Cryptography



2

Patient data



2

Patient data

What is the success rate 
for this surgery?



It’s !99.9%

2

Patient data

What is the success rate 
for this surgery?



2

f𝖼𝗈𝗎𝗇𝗍( ⋅ )

Patient data

What is the success rate 
for this surgery?

99.9%



Zero-Knowledge Proof (ZKP) [GMR85]

2

f𝖼𝗈𝗎𝗇𝗍( ⋅ )

Patient data

What is the success rate 
for this surgery?

99.9%



3

Patient dataPatient data



Diagnostic model 

3

Patient dataPatient data



3

Diagnostic model 

Patient dataPatient data



Secure Multi-Party Computation (MPC) [Yao86]

f𝗍𝗋𝖺𝗂𝗇( ⋅ )

Diagnostic model Diagnostic model 
3

Patient dataPatient data



ZKP and MPC are Generic:
Being capable of any function

4



f𝖺𝗇𝗒( ⋅ )

ZKP and MPC are Generic:
Being capable of any function

f𝖺𝗇𝗒( )

f𝖺𝗇𝗒( , ) f𝖺𝗇𝗒( , )

4

f𝖺𝗇𝗒( ⋅ )



5



5



5



5



5



ZKP and MPC deployments 
are rare

6



ZKP and MPC deployments 
are rare

6



Poor Usability
Mastering these techniques requires a notably steep learning curve

7



Poor Usability

7

Mastering these techniques requires a notably steep learning curve



Poor Usability

Secure

7

Mastering these techniques requires a notably steep learning curve



Poor Usability

Secure

Secure

Efficient

7

Mastering these techniques requires a notably steep learning curve



Secure

Efficient

My Research Focus

8



Secure

Efficient

My Research Focus

Generic Toolchains:
Being capable of any real-world computation

8



Secure

Efficient

My Research Focus

Generic Toolchains:
Being capable of any real-world computation

Crypto 
VM

8



Secure

Efficient

My Research Focus

Generic Toolchains:
Being capable of any real-world computation

Crypto 
VM

8



Secure

Efficient

My Research Focus

Generic Toolchains:
Being capable of any real-world computation

Crypto 
VM

Compile

8



Secure

Efficient

My Research Focus

Generic Toolchains:
Being capable of any real-world computation

Crypto 
VM

Compile

8



Secure

Efficient

My Research Focus

Generic Toolchains:
Being capable of any real-world computation

Crypto 
VM

Compile

8



Do We Already Have Such a VM?

Crypto 
VM

9



Crypto 
VM

9

Do We Already Have Such a VM?



Crypto 
VM

New Algorithms Crypto 
VM

9

Do We Already Have Such a VM?



Existing Generic Methods:
Being capable of any computation

My Generic Toolchains:
Being capable of any real-world computation

10



×

× +
+

Existing Generic Methods:
Being capable of any computation

My Generic Toolchains:
Being capable of any real-world computation

10



×

× +
+

#Gate       Cost

Existing Generic Methods:
Being capable of any computation

My Generic Toolchains:
Being capable of any real-world computation

10



×

× +
+

#Gate       Cost

Existing Generic Methods:
Being capable of any computation

My Generic Toolchains:
Being capable of any real-world computation

10



×

× +
+

#Gate       Cost

Existing Generic Methods:
Being capable of any computation

My Generic Toolchains:
Being capable of any real-world computation

10



×

× +
+

#Gate       Cost

Existing Generic Methods:
Being capable of any computation

My Generic Toolchains:
Being capable of any real-world computation

10



×

× +
+

#Gate       Cost

if  else C0 C1Branching

Existing Generic Methods:
Being capable of any computation

My Generic Toolchains:
Being capable of any real-world computation

10



×

× +
+

#Gate       Cost

if  else C0 C1

C = (1 − b)C0 + bC1 |C | ≈ |C0 | + |C1 |

Branching

Existing Generic Methods:
Being capable of any computation

My Generic Toolchains:
Being capable of any real-world computation

10



×

× +
+

Memory

Branching

#Gate       Cost

if  else C0 C1

C = (1 − b)C0 + bC1 |C | ≈ |C0 | + |C1 |

M[i]

Existing Generic Methods:
Being capable of any computation

My Generic Toolchains:
Being capable of any real-world computation

10



×

× +
+

Memory

Branching

#Gate       Cost

if  else C0 C1

C = (1 − b)C0 + bC1 |C | ≈ |C0 | + |C1 |

M[i]

C =
N

∑
j=1

(i ?= j) ⋅ M[ j] |C | ≈ N

Existing Generic Methods:
Being capable of any computation

My Generic Toolchains:
Being capable of any real-world computation

10



11



ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1] b2, i2, D2 M[i2]

11



ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1] b2, i2, D2 M[i2]

11



ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1] b2, i2, D2 M[i2]

Branching Branching Branching Branching

Memory Memory Memory

11



ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1] b2, i2, D2 M[i2]

Branching Branching Branching Branching

Memory Memory Memory

CPU RAM

11



ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1] b2, i2, D2 M[i2]

Branching Branching Branching Branching

Memory Memory Memory

CPU RAM

Prior ZK VMs [BCTV14b, BCTV14a, BCG+13] 
“ Hz”!<10

11



CPU RAM

Prior Work

12



CPU RAM

Prior Work

RAM

[YH Security’24][YHKD EuroS&P’22][H Y DK S&P’21]1 1

Co-first Authorship1

12



CPU RAM

Prior Work

RAM

[YH Security’24][YHKD EuroS&P’22]

CPU

Alphabetic Order

Distinguished Paper Award

Co-first Authorship1

[H Y DK S&P’21]1 1

12

[HHKVY Asiacrypt’24][YHHKV CCS’23] [Yang ePrint’25]



Alphabetic Order

Distinguished Paper Award

Co-first Authorship

CPU RAM

Prior Work

RAM

[YH Security’24][YHKD EuroS&P’22]

CPU

[HHKVY Asiacrypt’24]

CPU RAM

[YHHKV CCS’23] [YHHKV CCS’24][YPHK CCS’23]

1

[H Y DK S&P’21]1 1

12

[Yang ePrint’25]



Alphabetic Order

Distinguished Paper Award

1 Co-first Authorship

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

ZK Memory

[YH Security’24]
[YHKD EuroS&P’22]

[H Y DK S&P’21]1 1

ZK Branching

[YHHKV CCS’24]

MPC Memory&Branching

[YPHK CCS’23]

13

[Yang ePrint’25]



Alphabetic Order

Distinguished Paper Award

1 Co-first Authorship

ZK Memory

[YH Security’24]
[YHKD EuroS&P’22]

[H Y DK S&P’21]1 1

ZK Branching

[YHHKV CCS’24]

MPC Memory&Branching

[YPHK CCS’23]

Theory SystemMe

13

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



Alphabetic Order

Distinguished Paper Award

ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24]

1 Co-first Authorship

[H Y DK S&P’21]1 1

Theory SystemMe

•  A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

13

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



Alphabetic Order

Distinguished Paper Award

ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24]

1 Co-first Authorship

[H Y DK S&P’21]1 1

Theory SystemMe

•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( x)≈1 ≈1000
•  A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

13

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



Alphabetic Order

Distinguished Paper Award

ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24]

1 Co-first Authorship

[H Y DK S&P’21]1 1

Theory SystemMe

•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( x)≈1 ≈1000
•  A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

•  A zero-knowledge (ZK) read-write memory achieving optimal complexity

13

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



Alphabetic Order

Distinguished Paper Award

ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24]

1 Co-first Authorship

[H Y DK S&P’21]1 1

Theory SystemMe

•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( x)≈1 ≈1000
•  A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

•  A zero-knowledge (ZK) read-write memory achieving optimal complexity
•  A zero-knowledge (ZK) branching protocol achieving optimal complexity

13

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



Alphabetic Order

Distinguished Paper Award

ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24]

1 Co-first Authorship

[H Y DK S&P’21]1 1

Theory SystemMe

•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( x)≈1 ≈1000
•  A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

•  A zero-knowledge (ZK) read-write memory achieving optimal complexity
•  A zero-knowledge (ZK) branching protocol achieving optimal complexity
•  A zero-knowledge (ZK) CPU+RAM achieving optimal complexity ( x)≈100

13

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



Alphabetic Order

Distinguished Paper Award

ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24]

1 Co-first Authorship

[H Y DK S&P’21]1 1

Theory SystemMe

•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( x)≈1 ≈1000
1. A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

2. A zero-knowledge (ZK) read-write memory achieving optimal complexity
3. A zero-knowledge (ZK) branching protocol achieving optimal complexity
•  A zero-knowledge (ZK) CPU+RAM achieving optimal complexity ( x)≈100

13

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



Notation

14



Notation

14



Notation

Prover
Verifier

14



Notation

Prover
Verifier

F( ⋅ )I know w Alice knows , 
s.t. 

w
F(w) = 0

14



Notation

Prover
Verifier

I know w Alice knows , 
s.t. 

w
F(w) = 0

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1]

⋯

w

14



Notation

Prover
Verifier

F( ⋅ )I don’t know w Alice is cheating!

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 b1, i1, D1 M[i1]

⋯

w

Soundness

M[i0]
14



Notation

Prover
Verifier

F( ⋅ ) Alice is cheating!

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[ j ≠ i0] b1, i1, D1 M[i1]

⋯

w

Soundness

I don’t know w

14



Notation

Prover
Verifier

F( ⋅ )I know w I want to know more!

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1]

⋯

w

Soundness Zero Knowledge

14



Notation

Prover
Verifier

F( ⋅ )I know w I want to know more!

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1]

⋯

w

Soundness Zero Knowledge

14



Notation

Prover
Verifier

F( ⋅ )I know w I want to know more!

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1]

⋯

w

Soundness Zero Knowledge

14



Notation

Prover
Verifier

F( ⋅ )I know w I want to know more!

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

[b0], [i0], [D0] [M[i0]] [b1], [i1], [D1] [M[i1]]

⋯

w

Soundness Zero Knowledge

14



Notation

Prover
Verifier

F( ⋅ )I know w I want to know more!

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

[b0], [i0], [D0] [M[i0]] [b1], [i1], [D1] [M[i1]]

⋯

w

Soundness Zero Knowledge

[x] + [y] = [x + y]
[x] ⋅ [y] = [x ⋅ y]
test_zero([x])

Each costs :O(1)

14



Challenges and Techniques

15



Verifier

Challenges and Techniques

15



Verifier

ADD
MUL
SHL
AND
⋯

Verifier needs to read every instruction;
otherwise, the unread one is not executed

Challenges and Techniques

15



Verifier

ADD
MUL
SHL
AND
⋯

Verifier needs to read every instruction;
otherwise, the unread one is not executed

M :

Verifier needs to read every slot;
otherwise, the unread one is not executed

Challenges and Techniques

15



Verifier

ADD
MUL
SHL
AND
⋯

Verifier needs to read every instruction;
otherwise, the unread one is not executed

M :

Verifier needs to read every slot;
otherwise, the unread one is not executed

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1] b2, i2, D2 M[i2]

Challenges and Techniques

15



Verifier

ADD
MUL
SHL
AND
⋯

Verifier needs to read every instruction;
otherwise, the unread one is not executed

M :

Verifier needs to read every slot;
otherwise, the unread one is not executed

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1] b2, i2, D2 M[i2]

1. We repeatedly use the same branching or 
memory, the linear cost can be effectively 
amortized over multiple accesses

Challenges and Techniques

15



Verifier

ADD
MUL
SHL
AND
⋯

Verifier needs to read every instruction;
otherwise, the unread one is not executed

M :

Verifier needs to read every slot;
otherwise, the unread one is not executed

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1] b2, i2, D2 M[i2]

1. We repeatedly use the same branching or 
memory, the linear cost can be effectively 
amortized over multiple accesses

2.      knows everything,      only needs to 
verify (Remark:      can still cheat!)

Challenges and Techniques

15



Verifier

ADD
MUL
SHL
AND
⋯

Verifier needs to read every instruction;
otherwise, the unread one is not executed

M :

Verifier needs to read every slot;
otherwise, the unread one is not executed

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

ADD
MUL
SHL
AND
⋯

b0, i0, D0 M[i0] b1, i1, D1 M[i1] b2, i2, D2 M[i2]

Tech. 1: reuse and amortize

Challenges and Techniques

Tech. 2: P knows and helps

15



IEEE S&P 2021

CPU RAM CPU RAM

16



A zero-knowledge (ZK) full-toolchain system for 
any ANSI C program at KHz ( x)≈10 ≈1000

17



LLVM .ZK STD_C.so

CPU RAM

ZKVM

CPU RAM

ZKVM

PC PC

18



LLVM .ZK STD_C.so

CPU RAM

ZKVM

CPU RAM

ZKVM

PC PC

18



LLVM .ZK STD_C.so

CPU RAM

ZKVM

CPU RAM

ZKVM

PC PC

18



LLVM .ZK STD_C.so

CPU RAM

ZKVM

CPU RAM

ZKVM

PC PC

18



LLVM .ZK STD_C.so

CPU RAM

ZKVM

CPU RAM

ZKVM

PC PC

18



LLVM .ZK STD_C.so

CPU RAM

ZKVM

CPU RAM

ZKVM

PC PC

18



LLVM .ZK STD_C.so

CPU RAM

ZKVM

CPU RAM

ZKVM

PC PC

.CDesign

18



LLVM .ZK STD_C.so

CPU RAM

ZKVM

CPU RAM

ZKVM

PC PC

Design

Compile

.C

18



LLVM .ZK STD_C.so

CPU RAM

ZKVM

CPU RAM

ZKVM

PC PC

Design

Compile

.C

Run

Zero-knowledge for Everything and Everyone

18



LLVM .ZK STD_C.so

CPU RAM

ZKVM

CPU RAM

ZKVM

PC PC

Design

Compile

.C

Run

Zero-knowledge for Everything and Everyone
eZEE-pZEE!

18



Demo

19



Demo
gzip1.3

19



Demo

I can hack gzip1.3 
(found as the 

CVE-2005-1228 bug)

19

gzip1.3



20

zip

foo.zip foo.txt

gzip -N -d foo.zip



20

zip

foo.zip foo.txt

gzip -N -d foo.zip

zip

foo.zip foo.txt

gzip -N -d foo.zip



zip

foo.zip foo.txt

gzip -N -d foo.zip

zip

foo.zip foo.txt

gzip -N -d foo.zip

gzip1.3

Check that the output path is different

20



21



Secure

Efficient

22



Is KHz Fast Enough?≈10

23



Is KHz Fast Enough?≈10

Crypto 
VM

v.s.

23



Is KHz Fast Enough?≈10

Crypto 
VM

v.s. We can run Linux programs 
gzip/sed/bzip, and prove the 

existence of CVE bugs in s<20

23



ZK Branching

24



We carefully choose the instruction set, resulting in a relatively small CPU “unit” circuit

ZK Branching

24



We carefully choose the instruction set, resulting in a relatively small CPU “unit” circuit

ZK Branching

24



ZK Memory

25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

ZK Memory

25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b], [i], [D]

[M0]

[M1]

[M2]

[M3]

[M4]

[M5]

[M6]

[M7]

ZK Memory

25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b], [i], [D]

[M0]

[M1]

[M2]

[M3]

[M4]

[M5]

[M6]

[M7]

[Mi]

[if (i = 0) (1 − b)M0 + bD, else M0]

[if (i = 1) (1 − b)M1 + bD, else M1]

[if (i = 2) (1 − b)M2 + bD, else M2]

[if (i = 3) (1 − b)M3 + bD, else M3]

[if (i = 4) (1 − b)M4 + bD, else M4]

[if (i = 5) (1 − b)M5 + bD, else M5]

[if (i = 6) (1 − b)M6 + bD, else M6]

[if (i = 7) (1 − b)M7 + bD, else M7]

ZK Memory

25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b], [4], [D]

[M0]

[M1]

[M2]

[M3]

[M4]

[M5]

[M6]

[M7]

Permutation

Tech. 2: P knows and helps

ZK Memory

25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b], [4], [D]

[M0]

[M1]

[M2]

[M3]

[M4]

[M5]

[M6]

[M7]

Permutation

[M4]

[M0]

[M1]

[M2]

[M3]

[M5]

[M6]

[M7]

ZK Memory

Tech. 2: P knows and helps

25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b], [4], [D]

[M0]

[M1]

[M2]

[M3]

[M4]

[M5]

[M6]

[M7]

Permutation

[M4]

[M0]

[M1]

[M2]

[M3]

[M5]

[M6]

[M7]

ZK Memory

25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b], [4], [D]

[M0]

[M1]

[M2]

[M3]

[M4]

[M5]

[M6]

[M7]

Permutation

[M0]

[M4]

[M1]

[M2]

[M3]

[M5]

[M6]

[M7]

ZK Memory

25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b], [4], [D]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

Permutation

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

ZK Memory

25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b], [4], [D]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

Permutation 
proof

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

ZK Memory

O(N)
25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b0], [4], [D0]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

Permutation 
proof

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

[b1], [6], [D1]

ZK Memory

O(N)
25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b0], [4], [D0]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

Permutation 
proof

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

[b1], [6], [D1]

Permutation 
proof

[6], [M6]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[4], [M4]

[7], [M7]

ZK Memory

O(N) O(N)
25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b0], [4], [D0]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

Permutation 
proof

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

[b1], [6], [D1]

[6], [M6]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[4], [M4]

[7], [M7]

Permutation 
proof ⋯ Permutation 

proof

ZK Memory

O(N)

Permutation 
proof

O(N) O(N) O(N)
25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b0], [4], [D0]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

Permutation 
proof

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

[b1], [6], [D1]

[6], [M6]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[4], [M4]

[7], [M7]

Permutation 
proof ⋯ Permutation 

proof

ZK Memory

O(N)

Permutation 
proof

O(N) O(N) O(N)
25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b0], [4], [D0]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

Permutation 
proof

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

[b1], [6], [D1]

Tech. 1: reuse and amortize

ZK Memory

O(N)
25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b0], [4], [D0]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

[b1], [6], [D1]

ZK Memory

Permutation 
proof

O(N)

Tech. 1: reuse and amortize

25



[4], [M4]

[6], [M6]

Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b0], [4], [D0]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

[b1], [6], [D1]

Permutation 
proof

ZK Memory

Permutation 
proof

O(N)
25



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b0], [4], [D0]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

[b1], [6], [D1]

Permutation 
proof

ZK Memory

Permutation 
proof

O(N)
25

Permutation 
proof

[4], [M4]

[6], [M6] [1], [M1]

[6], [M6]

[5], [M5]

[2], [M2]



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b0], [4], [D0]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

[b1], [6], [D1]

Permutation 
proof

ZK Memory

Permutation 
proof

O(N)
25

Permutation 
proof

[4], [M4]

[6], [M6] [1], [M1]

[6], [M6]

[5], [M5]

[2], [M2]
Permutation 

proof

[2], [M2]

[1], [M1]



Assuming a read-write memory with  slots, we propose BubbleCache:
 per access

N
O(N) ⇒ O(log N)

[b0], [4], [D0]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

[b1], [6], [D1]

Permutation 
proof

ZK Memory

Permutation 
proof

O(N)
25

Permutation 
proof

[4], [M4]

[6], [M6] [1], [M1]

[6], [M6]

[5], [M5]

[2], [M2]
Permutation 

proof

[2], [M2]

[1], [M1]

Begin again from the start



CPU RAM

26



CPU RAM

Continue!
26



USENIX Security 2024

RAM RAM

27



Constant-Overhead ZK Memory
Assuming a read-write memory with  slots, we propose a ZK memory:

 per access
N

O(N) ⇒ O(log N) ⇒ O(1)

28



Constant-Overhead ZK Memory
Assuming a read-write memory with  slots, we propose a ZK memory:

 per access
N

O(N) ⇒ O(log N) ⇒ O(1)

“Two Shuffles (i.e., Permutations) Make a RAM”

28



Constant-Overhead ZK Memory
Assuming a read-write memory with  slots, we propose a ZK memory:

 per access
N

O(N) ⇒ O(log N) ⇒ O(1)

“Two Shuffles (i.e., Permutations) Make a RAM”
[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

[4], [M4]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

Permutation 
proof

Permutation 
proof

Permutation 
proof

O(N)

Permutation 
proof

Permutation 
proof

Permutation 
proof

⋯

28



Constant-Overhead ZK Memory
Assuming a read-write memory with  slots, we propose a ZK memory:

 per access
N

O(N) ⇒ O(log N) ⇒ O(1)

“Two Shuffles (i.e., Permutations) Make a RAM”
[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

[4], [5]

[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[5], [M5]

[6], [M6]

[7], [M7]

Permutation 
proof

Permutation 
proof

Permutation 
proof

O(N)

Permutation 
proof

Permutation 
proof

Permutation 
proof

⋯

28

: cheat!



Constant-Overhead ZK Memory
Assuming a read-write memory with  slots, we propose a ZK memory:

 per access
N

O(N) ⇒ O(log N) ⇒ O(1)

“Two Shuffles (i.e., Permutations) Make a RAM”
[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

[4], [5]

28

[6], [M6] [2], [M2] ⋯



Constant-Overhead ZK Memory
Assuming a read-write memory with  slots, we propose a ZK memory:

 per access
N

O(N) ⇒ O(log N) ⇒ O(1)

“Two Shuffles (i.e., Permutations) Make a RAM”
[0], [M0]

[1], [M1]

[2], [M2]

[3], [M3]

[4], [M4]

[5], [M5]

[6], [M6]

[7], [M7]

[4], [5] ⋯

28

[6], [M6] [2], [M2]

Global final check

: cheat!



Constant-Overhead ZK Memory
Assuming a read-write memory with  slots, we propose a ZK memory:

 per access
N

O(N) ⇒ O(log N) ⇒ O(1)

“Two Shuffles (i.e., Permutations) Make a RAM”

Permutation proof Permutation proof

Access history record

Access history record

Access history record

Access history record

N + T N + T

(  denotes the time of accesses)T

28



Simplifications:

29



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2

29



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

29



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

29

[0], [M0] [1], [M1] [1], [D0] [0], [D1] [0], [D2] [1], [D3]



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

29

[0], [M0] [1], [M1] [1], [D0] [0], [D1] [0], [D2] [1], [D3]

Tech. 2: P knows and helps



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

29

[0], [M0] [1], [M1] [1], [D0] [0], [D1] [0], [D2] [1], [D3]

Tech. 2: P knows and helps

[1], [M1] [0], [M0] [0], [D1] [1], [D1] [0], [D2] [1], [D3]

Time = 1 Time = 2 Time = 3 Time = 4



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

29

[0], [M0] [1], [M1] [1], [D0] [0], [D1] [0], [D2] [1], [D3]

Tech. 2: P knows and helps

[1], [M1] [0], [M0] [0], [D1] [1], [D1] [0], [D2] [1], [D3]

Time = 1 Time = 2 Time = 3 Time = 4

Record

Record

∼



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

Record

Record

[0], [M0] [1], [M1]

[1], [D0]

[1], [D0] [0], [D1]

[0], [M0]

[0], [D2]

[0], [D1]

[1], [D3]

[1], [M1] [0], [D2] [1], [D3]
∼

Tech. 2: P knows and helps

29

Time = 1 Time = 2 Time = 3 Time = 4



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

Record

Record

[0], [M0] [1], [M1]

[1], [D0]

[1], [D0] [0], [D1]

[0], [M0]

[0], [D2]

[0], [D1]

[1], [D3]

[1], [M1] [0], [D2] [1], [D3]
∼

Tech. 2: P knows and helps

29

Time = 1 Time = 2 Time = 3 Time = 4

Maintain triples: (index, value, timestamp)



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

Record

Tech. 2: P knows and helps

29

Maintain triples: (index, value, timestamp)

[0], [M0], [0] [1], [M1], [0] [1], [D0], [1] [0], [D1], [2] [0], [D2], [3] [1], [D3], [4]

Time = 1 Time = 2 Time = 3 Time = 4



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

Record

Tech. 2: P knows and helps

29

Maintain triples: (index, value, timestamp)

[0], [M0], [0] [1], [M1], [0] [1], [D0], [1] [0], [D1], [2] [0], [D2], [3] [1], [D3], [4]

Time = 1 Time = 2 Time = 3 Time = 4

Record

∼
[1], [M1], [0] [0], [M0], [0] [0], [D1], [2] [1], [D1], [1] [0], [D2], [3] [1], [D3], [4]



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

Record

Record

[0], [M0], [0] [1], [M1], [0]

Maintain triples: (index, value, timestamp)

[1], [M1], [0]

[1], [D0], [1]

Time = 1

[0], [D1], [2]

[0], [M0], [0]

[0], [D2], [3]

[0], [D1], [2]

[1], [D3], [4]

[1], [D1], [1] [0], [D2], [3] [1], [D3], [4]

Time = 2 Time = 3 Time = 4

∼
Tech. 2: P knows and helps

29



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

Record

Record

[0], [M0], [0] [1], [M1], [0]

Maintain triples: (index, value, timestamp)

[1], [M1], [0]

[1], [D0], [1]

Time = 1

[0], [D1], [2]

[0], [M0], [0]

[0], [D2], [3]

[0], [D1], [2]

[1], [D3], [4]

[1], [D1], [1] [0], [D2], [3] [1], [D3], [4]

Time = 2 Time = 3 Time = 4

∼
Record

Record

∼

Tech. 2: P knows and helps

29



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

Record

Record

[0], [M0], [0] [1], [M1], [0]

Maintain triples: (index, value, timestamp)

[1], [M1], [0]

[1], [D0], [1]

Time = 1

[0], [D1], [2]

[0], [M0], [0]

[0], [D2], [3]

[0], [D1], [2]

[1], [D3], [4]

[1], [D1], [1] [0], [D2], [3] [1], [D3], [4]

Time = 2 Time = 3 Time = 4

∼
Record

Record

∼ Total cost: O(N + T)

Tech. 2: P knows and helps

29



Simplifications: Perform  accesses to a ZK RAM with  slotsT = 4 N = 2
Read-Write( , )[1] [D0] Read-Write( , )[0] [D1] Read-Write( , )[0] [D2] Read-Write( , )[1] [D3]

Record

Record

[0], [M0], [0] [1], [M1], [0]

Maintain triples: (index, value, timestamp)

[1], [M1], [0]

[1], [D0], [1]

Time = 1

[0], [D1], [2]

[0], [M0], [0]

[0], [D2], [3]

[0], [D1], [2]

[1], [D3], [4]

[1], [D1], [1] [0], [D2], [3] [1], [D3], [4]

Time = 2 Time = 3 Time = 4

∼
Record

Record

∼ Total cost: O(N + T)

Tech. 1: reuse and amortize

Tech. 2: P knows and helps

29



Concrete improvements over BubbleCache: 
, depending on the network settings12−160×

30



Concrete improvements over BubbleCache: 
, depending on the network settings12−160×

“One Shuffle (i.e., Permutation) Makes a ROM”

30



Concrete improvements over BubbleCache: 
, depending on the network settings12−160×

“One Shuffle (i.e., Permutation) Makes a ROM”

Total cost:  for  accesses and length-  vectorsO(Nm + Tm) T m
ZK RAM and ROM over vectors

30



ACM CCS 2023

🏆 Distinguished Paper Award

CPU CPU

31



Batched Disjunctions

32



Batched Disjunctions

+

+ ×
×

×

× +
+ ⋁

I know the inputs that make 
one of these two circuits to produce 

an output of zero

32

Containing  Branches and  Repetition2 1



Batched Disjunctions

+

+ ×
×

×

× +
+ ⋁

SHL
AND

I know the inputs that make 
one of these two circuits to produce 

an output of zero

32

Containing  Branches and  Repetition2 1



Batched Disjunctions

+

+ ×
×

×

× +
+ ⋁

Straightforward-but-expensive approach:

×

×

× +

+

+

×

!

+

+ ×

×

multiplexer

Cost: >2 |C |

I know the inputs that make 
one of these two circuits to produce 

an output of zero

32

Containing  Branches and  Repetition2 1

SHL
AND



Batched Disjunctions

+

+ ×
×

×

× +
+ ⋁

I know the inputs that make 
one of these  circuits to produce an 

output of zero
B

SHL
AND
LT

XOR
⋯

O(B |C | )

⋁⋯

32

Containing  Branches and  RepetitionB 1



Batched Disjunctions

+

+ ×
×

×

× +
+ ⋁

I know  inputs that make 
one of these  circuits to produce 

an output of zero

R
B

⋁⋯

× R

× R( )

32

Containing  Branches and  RepetitionB R

O(RB |C | )

SHL
AND
LT

XOR
⋯



Batched Disjunctions

+

+ ×
×

×

× +
+ ⋁

I know  inputs that make 
one of these  circuits to produce 

an output of zero

R
B

⋁⋯

× R

× R( )

32

Containing  Branches and  RepetitionB R

O(RB |C | )

O(B |C | + R |C | )

SHL
AND
LT

XOR
⋯



×

× +

+

33



×

× +

+

[in1]

[in2]

[in3]

[in4]

[ℓ1]

[r1]

[ℓ2]

[r2]

33



×

× +

+

[in1]

[in2]

[in3]

[in4]

[ℓ1]

[r1]

[ℓ1 ⋅ r1]

[ℓ2]

[r2]

[ℓ2 ⋅ r2]

33



×

× +

+

[in1]

[in2]

[in3]

[in4]

[ℓ1]

[r1]

[ℓ2]

[r2]

inner_product( ⃗tv, ) = [0]

Topology vector: public and determined by the circuit

[in1 in2 in3 in4 ℓ1 r1 ℓ1r1 ℓ2 r2 ℓ2r2]

[ℓ1 ⋅ r1]

[ℓ2 ⋅ r2]

33



+

+ ×
×

×

× +
+ ⋁ ⋁⋯

⃗tv1 ⃗tvB⋯

34



+

+ ×
×

×

× +
+ ⋁ ⋁⋯

[in1 in2 in3 in4 ℓ1 r1 ℓ1r1 ℓ2 r2 ℓ2r2]

⃗tv1 ⃗tvB⋯

34



+

+ ×
×

×

× +
+ ⋁ ⋁⋯

⃗tv1 ⃗tvB⋯

∃i, inner_product( ⃗tvi , ) = [0][in1 in2 in3 in4 ℓ1 r1 ℓ1r1 ℓ2 r2 ℓ2r2]

34



+

+ ×
×

×

× +
+ ⋁ ⋁⋯

: [i]

⃗tv1 ⃗tvB⋯
Tech. 2: P knows and helps

34

∃i, inner_product( ⃗tvi , ) = [0][in1 in2 in3 in4 ℓ1 r1 ℓ1r1 ℓ2 r2 ℓ2r2]



+

+ ×
×

×

× +
+ ⋁ ⋁⋯

: [i] [ ⃗tvi ]

⃗tv1 ⃗tvB⋯

[in1 in2 in3 in4 ℓ1 r1 ℓ1r1 ℓ2 r2 ℓ2r2]

34

) = [0]inner_product([ ⃗tvi ],



+

+ ×
×

×

× +
+ ⋁ ⋁⋯

: [i] [ ⃗tvi ]

⃗tv1 ⃗tvB⋯
ZK ROM

[in1 in2 in3 in4 ℓ1 r1 ℓ1r1 ℓ2 r2 ℓ2r2]

34

) = [0]inner_product([ ⃗tvi ],



+

+ ×
×

×

× +
+ ⋁ ⋁⋯

: [i] [ ⃗tvi ]

⃗tv1 ⃗tvB⋯
ZK ROM

× R( )

inner_product([ ⃗tvi ],[in1 in2 in3 in4 ℓ1 r1 ℓ1r1 ℓ2 r2 ℓ2r2]

34

) = [0]



[in(1)
1 in(1)

2 in(1)
3 in(1)

4 ℓ(1)
1 r(1)

1 ℓ(1)
1 r(1)

1 ℓ(1)
2 r(1)

2 ℓ(1)
2 r(1)

2 ]

+

+ ×
×

×

× +
+ ⋁ ⋁⋯

: [i1] [ ⃗tvi1]

⃗tv1 ⃗tvB⋯
ZK ROM

× R( )
[i2] ⋯[iR] [ ⃗tvi2]⋯[ ⃗tviR]

⋯

inner_product([ ⃗tvi1], ) = [0]
[in(2)

1 in(2)
2 in(2)

3 in(2)
4 ℓ(2)

1 r(2)
1 ℓ(2)

1 r(2)
1 ℓ(2)

2 r(2)
2 ℓ(2)

2 r(2)
2 ]inner_product([ ⃗tvi2], ) = [0]

[in(R)
1 in(R)

2 in(R)
3 in(R)

4 ℓ(R)
1 r(R)

1 ℓ(R)
1 r(R)

1 ℓ(R)
2 r(R)

2 ℓ(R)
2 r(R)

2 ]inner_product([ ⃗tviR], ) = [0]
34



+

+ ×
×

×

× +
+ ⋁ ⋁⋯

: [i1] [ ⃗tvi1]

⃗tv1 ⃗tvB⋯
ZK ROM

× R( )
[i2] ⋯[iR] [ ⃗tvi2]⋯[ ⃗tviR]

Total cost:  for  
accesses and length-  vectors

O(Nm + Tm) T
m

[in(1)
1 in(1)

2 in(1)
3 in(1)

4 ℓ(1)
1 r(1)

1 ℓ(1)
1 r(1)

1 ℓ(1)
2 r(1)

2 ℓ(1)
2 r(1)

2 ]

⋯

inner_product([ ⃗tvi1],

[in(2)
1 in(2)

2 in(2)
3 in(2)

4 ℓ(2)
1 r(2)

1 ℓ(2)
1 r(2)

1 ℓ(2)
2 r(2)

2 ℓ(2)
2 r(2)

2 ]inner_product([ ⃗tvi2],

[in(R)
1 in(R)

2 in(R)
3 in(R)

4 ℓ(R)
1 r(R)

1 ℓ(R)
1 r(R)

1 ℓ(R)
2 r(R)

2 ℓ(R)
2 r(R)

2 ]inner_product([ ⃗tviR],
34

) = [0]

) = [0]

) = [0]



+

+ ×
×

×

× +
+ ⋁ ⋁⋯

: [i1] [ ⃗tvi1]

⃗tv1 ⃗tvB⋯
ZK ROM

× R( )
[i2] ⋯[iR] [ ⃗tvi2]⋯[ ⃗tviR]

O(B |C | + R |C | )

[in(1)
1 in(1)

2 in(1)
3 in(1)

4 ℓ(1)
1 r(1)

1 ℓ(1)
1 r(1)

1 ℓ(1)
2 r(1)

2 ℓ(1)
2 r(1)

2 ]

⋯

inner_product([ ⃗tvi1],

[in(2)
1 in(2)

2 in(2)
3 in(2)

4 ℓ(2)
1 r(2)

1 ℓ(2)
1 r(2)

1 ℓ(2)
2 r(2)

2 ℓ(2)
2 r(2)

2 ]inner_product([ ⃗tvi2],

[in(R)
1 in(R)

2 in(R)
3 in(R)

4 ℓ(R)
1 r(R)

1 ℓ(R)
1 r(R)

1 ℓ(R)
2 r(R)

2 ℓ(R)
2 r(R)

2 ]inner_product([ ⃗tviR],
34

) = [0]

) = [0]

) = [0]



+

+ ×
×

×

× +
+ ⋁ ⋁⋯

: [i1] [ ⃗tvi1]

⃗tv1 ⃗tvB⋯
ZK ROM

× R( )
[i2] ⋯[iR] [ ⃗tvi2]⋯[ ⃗tviR]

O(B |C | + R |C | )

O(R |C | )

:
[in(1)

1 in(1)
2 in(1)

3 in(1)
4 ℓ(1)

1 r(1)
1 ℓ(1)

1 r(1)
1 ℓ(1)

2 r(1)
2 ℓ(1)

2 r(1)
2 ]

⋯

inner_product([ ⃗tvi1],

[in(2)
1 in(2)

2 in(2)
3 in(2)

4 ℓ(2)
1 r(2)

1 ℓ(2)
1 r(2)

1 ℓ(2)
2 r(2)

2 ℓ(2)
2 r(2)

2 ]inner_product([ ⃗tvi2],

[in(R)
1 in(R)

2 in(R)
3 in(R)

4 ℓ(R)
1 r(R)

1 ℓ(R)
1 r(R)

1 ℓ(R)
2 r(R)

2 ℓ(R)
2 r(R)

2 ]inner_product([ ⃗tviR],
34

) = [0]

) = [0]

) = [0]



+

+ ×
×

×

× +
+ ⋁ ⋁⋯

: [i1] [ ⃗tvi1]

⃗tv1 ⃗tvB⋯
ZK ROM

× R( )
[i2] ⋯[iR] [ ⃗tvi2]⋯[ ⃗tviR]

O(B |C | + R |C | )

O(B |C | )

O(R |C | )

[in(1)
1 in(1)

2 in(1)
3 in(1)

4 ℓ(1)
1 r(1)

1 ℓ(1)
1 r(1)

1 ℓ(1)
2 r(1)

2 ℓ(1)
2 r(1)

2 ]

⋯

inner_product([ ⃗tvi1],

[in(2)
1 in(2)

2 in(2)
3 in(2)

4 ℓ(2)
1 r(2)

1 ℓ(2)
1 r(2)

1 ℓ(2)
2 r(2)

2 ℓ(2)
2 r(2)

2 ]inner_product([ ⃗tvi2],

[in(R)
1 in(R)

2 in(R)
3 in(R)

4 ℓ(R)
1 r(R)

1 ℓ(R)
1 r(R)

1 ℓ(R)
2 r(R)

2 ℓ(R)
2 r(R)

2 ]inner_product([ ⃗tviR],
34

) = [0]

) = [0]

) = [0]



Alphabetic Order

Distinguished Paper Award

* Co-first Authorship

ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24]
[H Y DK S&P’21]1 1

Theory SystemMe

•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( x)≈1 ≈1000
1. A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

2. A zero-knowledge (ZK) read-write memory achieving optimal complexity
3. A zero-knowledge (ZK) branching protocol achieving optimal complexity
•  A zero-knowledge (ZK) CPU+RAM achieving optimal complexity ( x)≈100

35

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



Alphabetic Order

Distinguished Paper Award

* Co-fi

ZK Memory ZK Branching MPC Memory&Branching

1. A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( ).
•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( ).
2. A zero-knowledge (ZK) read-write memory achieving “optimal” complexity.
3. A zero-knowledge (ZK) branching protocol achieving “optimal” complexity.
•  A zero-knowledge (ZK) full-fl

≈10 ≈1000×
≈1 ≈1000×

≈100×

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22]
[H*Y*DK S&P’21]

[YHHKV CCS’24]

Future Work

36



Crypto 
VM

Past

My PhD

Future Work
Hz

KHz

MHz GHz

37



Crypto 
VM

Past

My PhD

Future Work
Hz

KHz

MHz GHz

37



ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24]
[H Y DK S&P’21]1 1

Alphabetic Order

Distinguished Paper Award

1 Co-first Authorship

Theory SystemMe

•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( x)≈1 ≈1000
•  A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

•  A zero-knowledge (ZK) read-write memory achieving optimal complexity
•  A zero-knowledge (ZK) branching protocol achieving optimal complexity
•  A zero-knowledge (ZK) CPU+RAM achieving optimal complexity ( x)≈100

38

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24]
[H Y DK S&P’21]1 1

Alphabetic Order

Distinguished Paper Award

1 Co-first Authorship

Theory SystemMe

•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( x)≈1 ≈1000
•  A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

•  A zero-knowledge (ZK) read-write memory achieving optimal complexity
•  A zero-knowledge (ZK) branching protocol achieving optimal complexity
•  A zero-knowledge (ZK) CPU+RAM achieving optimal complexity ( x)≈100

38

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24] ???
[H Y DK S&P’21]1 1

Alphabetic Order

Distinguished Paper Award

1 Co-first Authorship

Theory SystemMe

•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( x)≈1 ≈1000
•  A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

•  A zero-knowledge (ZK) read-write memory achieving optimal complexity
•  A zero-knowledge (ZK) branching protocol achieving optimal complexity
•  A zero-knowledge (ZK) CPU+RAM achieving optimal complexity ( x)≈100

38

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24] ???
[H Y DK S&P’21]1 1

Alphabetic Order

Distinguished Paper Award

1 Co-first Authorship

Tech. 2: P knows and helps
Tech. 1: reuse and amortize

Theory SystemMe

•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( x)≈1 ≈1000
•  A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

•  A zero-knowledge (ZK) read-write memory achieving optimal complexity
•  A zero-knowledge (ZK) branching protocol achieving optimal complexity
•  A zero-knowledge (ZK) CPU+RAM achieving optimal complexity ( x)≈100

38

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



ZK Memory ZK Branching MPC Memory&Branching

[YPHK CCS’23]
[YH Security’24]

[YHKD EuroS&P’22] [YHHKV CCS’24] ???
[H Y DK S&P’21]1 1

Alphabetic Order

Distinguished Paper Award

1 Co-first Authorship

Theory SystemMe

•  A two-party computation (2PC) full-toolchain system for any assembly program at KHz ( x)≈1 ≈1000
•  A zero-knowledge (ZK) full-toolchain system for any ANSI C program at KHz ( x)≈10 ≈1000

•  A zero-knowledge (ZK) read-write memory achieving optimal complexity
•  A zero-knowledge (ZK) branching protocol achieving optimal complexity
•  A zero-knowledge (ZK) CPU+RAM achieving optimal complexity ( x)≈100

38

Tech. 2: P knows and helps
Tech. 1: reuse and amortize

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



Building Better Crypto VM

Secure

Efficient
Crypto 

VM

Compile

39

With the help of compilers, systems, PL, hardware, …



Building Better Crypto VM

Secure

Efficient
Crypto 

VM

Compile

39

With the help of compilers, systems, PL, hardware, …

Compiler



Building Better Crypto VM

Secure

Efficient
Crypto 

VM

Compile

39

With the help of compilers, systems, PL, hardware, …

Compiler

Programming
Languages



Building Better Crypto VM

Secure

Efficient
Crypto 

VM

Compile

39

With the help of compilers, systems, PL, hardware, …

Compiler

Programming
Languages

Hardware



Cryptography

Compiler

PL

AI ML

Hardware

Network Database

Bioinfo …

Efficiency

40



Cryptography

Compiler

PL

AI ML

Hardware

Network Database

Bioinfo …

Efficiency

Privacy, Robustness

40



Cryptography

Compiler

PL

AI ML

Hardware

Network Database

Bioinfo …

Efficiency

Privacy, Robustness

The state-of-the-art ZKML (Hao et al. USENIX Security’24) 
uses my open-sourced ZK ROM to improve efficiency!

40



ZK Memory ZK Branching MPC Memory&Branching

[YH Security’24]
[YHKD EuroS&P’22] [YHHKV CCS’24] [YPHK CCS’23]

Alphabetic Order

Distinguished Paper Award

1 Co-first Authorship

[H Y DK S&P’21]1 1

41

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



ZK Memory ZK Branching MPC Memory&Branching

Blockchain Fair MPC

[RY Asiacrypt’23]
[KLMRYZ ACNS’24]

[MKBMYRCZL NDSS’26]

[YH Security’24]
[YHKD EuroS&P’22] [YHHKV CCS’24] [YPHK CCS’23]

Alphabetic Order

Distinguished Paper Award

1 Co-first Authorship

[H Y DK S&P’21]1 1

41

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]



ZK Memory ZK Branching MPC Memory&Branching

Arithmetic GC

[HY Eurocrypt’24]

Blockchain Fair MPC

[RY Asiacrypt’23]

[YH Security’24]
[YHKD EuroS&P’22] [YHHKV CCS’24] [YPHK CCS’23]

Alphabetic Order

Distinguished Paper Award

1 Co-first Authorship

[H Y DK S&P’21]1 1

41

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]

[KLMRYZ ACNS’24]

[MKBMYRCZL NDSS’26]



ZK Memory ZK Branching MPC Memory&Branching

Arithmetic GC Post-Quantum

[YBHKR S&P’25]

Blockchain Fair MPC

[HY Eurocrypt’24][RY Asiacrypt’23]

[YH Security’24]
[YHKD EuroS&P’22] [YHHKV CCS’24] [YPHK CCS’23]

Alphabetic Order

Distinguished Paper Award

1 Co-first Authorship

[H Y DK S&P’21]1 1

41

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[Yang ePrint’25]

[KLMRYZ ACNS’24]

[MKBMYRCZL NDSS’26]



Alphabetic Order

Distinguished Paper Award

* Co-fi

ZK Memory ZK Branching MPC Memory&Branching

Arithmetic GC Post-quantum

[YBHKR S&P’25]

Blockchain Fair MPC

[HY Eurocrypt’24][RY Asiacrypt’23]
[KLMRYZ ACNS’24]

[MLKBMYRZ ePrint’23]

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[YH Security’24]
[YHKD EuroS&P’22]
[H*Y*DK S&P’21]

[YHHKV CCS’24] [YPHK CCS’23]
Make cryptography easily, efficiently, and 

securely accessible for everyone, including 
those with "zero knowledge" in the field

41



Alphabetic Order

Distinguished Paper Award

* Co-fi

ZK Memory ZK Branching MPC Memory&Branching

Arithmetic GC Post-quantum

[YBHKR S&P’25]

Blockchain Fair MPC

[HY Eurocrypt’24][RY Asiacrypt’23]
[KLMRYZ ACNS’24]

[MLKBMYRZ ePrint’23]

[HHKVY Asiacrypt’24]
[YHHKV CCS’23]

[YH Security’24]
[YHKD EuroS&P’22]
[H*Y*DK S&P’21]

[YHHKV CCS’24] [YPHK CCS’23]
Make cryptography easily, efficiently, and 

securely accessible for everyone, including 
those with "zero knowledge" in the field

41



Acknowledgements

42



https://yibinyang.info

Make cryptography easily, efficiently, and 
securely accessible for everyone, including 

those with "zero knowledge" in the field

Thank you!

Algorithms ToolchainsMe

https://yibinyang.info

